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Helical magnetohydrodynamic turbulence with Hall effects is ubiquitous in heliophysics and
plasma physics, such as star formation and solar activities, and its intrinsic mechanisms are still not
clearly explained. Direct numerical simulations reveal that when the forcing scale is comparable to
the ion inertial scale, Hall effects induce remarkable cross helicity. It then suppresses the inverse
cascade efficiency, leading to the accumulation of large-scale magnetic energy and helicity. The
process is accompanied by the breaking of current sheets via filaments along magnetic fields. Using
the Ulysses data, the numerical findings are separately confirmed. These results suggest a novel
mechanism wherein small-scale Hall effects could strongly affect large-scale magnetic fields through
cross helicity.

In Hall magnetohydrodynamic (HMHD) turbulence,
the ions and electrons decouple from each other, which
can be modeled via the Hall term in the generalized
Ohm’s law [1]. HMHD model is valid for the process
with timescales shorter than the ion cyclotron period,
such as star formation [2–4], dynamo action [5, 6], plane-
tary magnetosphere [7], and solar activities [8, 9]. In the
solar corona, the strongly helical magnetic field collision-
lessly reconnects, leading to the rapid eruption of plasma
[10–14].

In solar wind observation, the turbulent nature can be
verified through the von Kármán-Howarth (vKH) rela-
tions for magnetohydrodynamic (MHD) turbulence [15–
19]. Based on vKH relations, Smith et al. [20] discovered
prevailing inverse energy cascades when the cross helic-
ity is pronounced. Marino et al. [18] found that cross
helicity could affect the linear scaling ratio of the vKH
relation. In MHD and HMHD turbulence, magnetic he-
licity is another conservative quantity besides energy, and
could measure the magnetic reconnection process quanti-
tatively [1]. Politano et al. [21] derived the vKH relations
for magnetic helicity in MHD turbulence. Banerjee and
Galtier [22] derived the balance for magnetic helicity in
HMHD turbulence. Brandenburg et al. [23] found the
sign change of magnetic helicity at small- and large-scale
solar wind.

In practice, even if solar wind can be described by
MHD turbulence, the detailed mechanisms are hard to
be investigated in actual space plasma due to its com-
plex nature. High-precision direct numerical simulations
(DNS) are necessary. DNS of the helical MHD turbulence
showed that helicity injection could lead to the formation

of a large-scale magnetic field [24, 25]. Mininni et al.

[6] found the faster growth rates of large-scale magnetic
fields in HMHD turbulence. Dreher et al. [26] studied
the formation and disruption of Alfvénic filaments under
Hall effects.
However, even if there have been separate studies on

magnetic helicity and Hall effects, there remains limited
researches on their coupling effects, which are significant
in the collisionless reconnection of the solar corona [10].
The vKH relation about the magnetic helicity in HMHD
turbulence is still not addressed, and the existing related
theoretical works are also not verified. In this letter, we
will investigate the Hall effects on the cascades of mag-
netic energy and helicity, and then verify those findings
based on vKH relations in actual solar wind.
The governing equations for the velocity v and the

magnetic field b are [24, 27]:

∂tv = −(v · ∇)v −∇p+ j× b+ λ∆−1v + ν∆v + fv,

∂tb = ∇× (U× b) + λb∆
−1b+ η∆b+ fb,

(1)
where ∇ · v = 0 and ∇ · b = 0, p is the pressure, U =
v − dIj, dI is the ion inertial length, j = ∇ × b is the
current density, fv and fb are forcing terms at forcing
wavenumbers kf , λ∆

−1v and λb∆
−1b are hypo-viscous

terms, ν and η are the kinematic viscosity and magnetic
diffusivity, respectively.
Six DNSs are performed in this letter. The computa-

tional parameters are shown in TABLE I. M3, M6 and
M40 are the MHD cases with different kf , while H3, H6
and H40 are corresponding HMHD cases. The random
forcing schemes (fv and fb) only inject maximum mag-
netic helicity artificially but do not inject any hydrody-
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TABLE I. The computational configurations of flows. εv and
εb are injection rates of hydrodynamic and magnetic energy.

Case Grid dI ν = η λ = λb kf εv = εb
M3 20483 – 4× 10−5 0.1 3 0.015
H3 20483 0.05 4× 10−5 0.1 3 0.015
M6 20483 – 4× 10−5 0.1 6 0.015
H6 20483 0.05 4× 10−5 0.1 6 0.015
M40 10243 – 10−4 0.05 40-42 0.015
H40 10243 0.05 10−4 0.05 40-42 0.015
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FIG. 1. Compensated Spectra. (a) Eb(k)k
5/3. (b)

HM (k)k10/3.

namic or cross helicity. See the Supplemental Material
(SM) [28] for more numerical details.
FIG. 1 shows the spectra of magnetic energy Eb(k) =∑
|k|=k ℜ{b̂(k)·b̂

∗(k)}/2 and magnetic helicityHM (k) =∑
|k|=k ℜ{â(k) · b̂

∗(k)}, where ·̂ represents the values
in spectral space, and â(k) is the magnetic potential.
In FIG. 1 (a), Eb(k) ∼ k−5/3 in the inertial range
(k ∈ (4, 100)), but in the ion inertial scale (k ∼ 1/dI),
Eb(k) ∼ k−7/3 for HMHD cases (H3 and H6). For the
magnetic helicity in FIG. 1 (b), HM (k) ∼ k−10/3 for M3
and M6, due to the Alfvénic balance [29]. For the in-
verse cascade ranges of H40 and M40, HM (k) ∼ k−8/3 ∼
Eb(k)/k, implying a fully helical magnetic field. In the
evolutionary process given in SM [28], HM (k) ∼ k−10/3

in the inverse cascade range [24, 30]. Furthermore, the
comparison of M40 and H40 shows that Hall effects en-
hance large-scale magnetic energy and helicity by nearly
tenfold. This implies Hall effects could strongly affect
large-scale magnetic fields, which is the main subject of
this letter.
Then, the filtering approach [31, 32] is used for the

details of cascades. The fluxes for the magnetic en-
ergy (Π̃Eb1 and Π̃Eb2) and magnetic helicity (Π̃HM1 and
Π̃HM2) are considered:

Π̃Eb1 = −ǫijk j̃iτjk(v,b), (2a)

Π̃Eb2 = ǫijkdI j̃iτjk(j,b), (2b)

Π̃HM1 = −2ǫijk b̃iτjk(v,b), (2c)

Π̃HM2 = 2ǫijkdI b̃iτjk(j,b), (2d)

where τij(p,q) = p̃iqj − p̃iq̃j for arbitrary vectors p and
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FIG. 2. Fluxes versus the filter width ∆, where L = 2π. (a)
Magnetic energy fluxes; (b) Magnetic helicity fluxes. Solid
lines: H40; dashed lines: M40.

q, and the superscript ·̃ represents the filtered quan-
tities. Π̃Eb1 and Π̃HM1 both appear in MHD and
HMHD turbulence, while Π̃Eb2 and Π̃HM2 only appear
in HMHD turbulence. The overall magnetic energy
Π̃Eb = Π̃Eb1 + Π̃Eb2, and the overall magnetic helicity
Π̃HM = Π̃HM1 + Π̃HM2. For filtering approaches, differ-
ent filters lead to consistent qualitative results [33, 34],
and the fourth-order Butterworth filter [31] is used in
this study. FIG. 2 (a) shows the magnetic energy fluxes
of H40 and M40, where 〈·〉 represents the ensemble aver-
age. As shown, most magnetic energy cascades forward
towards small scales. Weak inverse cascades also appear
and have been identified as the α-effects [24, 30, 35].

FIG. 2 (b) shows the magnetic helicity fluxes.
〈
Π̃HM1

〉
is

the dominant term, and most magnetic helicity cascades
inversely towards large scales. Hall effects slightly reduce
the inverse cascade rates, attributed to the far greater
large-scale magnetic helicity and hypo-viscosity. In sum-
mary, Hall effects minimally affect the inverse cascades
of magnetic energy and helicity in FIG. 2, but strongly
enhance the large-scale magnetic energy and helicity in
FIG. 1. Therefore, it can be inferred that the enhanced
large-scale magnetic field may be related to the ineffi-
ciency of cascades.

With large scales governed by the inverse magnetic he-

licity cascades, the dominant term
〈
Π̃HM1

〉
is the focus

henceforth. According to Eq. (1) and (2c), the cascade
is directly related to cross helicity. FIG. 3 (a) shows the
cross helicity spectra HC(k) =

∑
|k|=k ℜ{v̂(k) · b̂

∗(k)}.
As shown, HC(k) is approximately zero for MHD cases
but negative for HMHD cases. In fact, for MHD cases,
cross helicity is conservative [1]. No cross helicity is in-
jected, making it inherently zero. In contrast, for HMHD
cases, generalized helicity and magnetic helicity are con-
servative [1]. The generalized helicity can be decomposed
into the sum of magnetic, hydrodynamic and cross he-
licity weighted by dI . Therefore, the weighted sum of
hydrodynamic and cross helicity is conservative. The
hydrodynamic helicity is transformed to cross helicity
through the Hall term (dI∇ × (j × b)). For the phys-
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FIG. 3. Cross helicity distributions and magnetic helicity

cascades. (a) HC(k). (b) P.D.F. of |c̃os θ|, with ∆1 = 0.038L
and ∆2 = 0.013L. Solid lines: H40; Dashed lines: M40.

(c) Joint P.D.F. of Π̃HM1 and |c̃os θ| with ∆ = 0.038L. (d)

Conditional average of ΓHM1 versus |c̃os θ|, with ∆ = 0.038L.

ical mechanisms, Hall effects are in fact the ion cyclotron
effects on the magnetic field induced by the Lorentz force.
In MHD cases, only the ion cyclotron effects on the veloc-
ity field are considered. In HMHD cases, the introduction
of ion cyclotron effects on the magnetic field, which cou-
ples the chiralities of velocity and magnetic fields, pro-
duces non-zero cross helicity.
Furthermore, the normalized cross helicity can be de-

fined as c̃os θ = ṽ · b̃/[|ṽ||b̃|], which evaluates the an-
gle between velocity and the magnetic fields. The nor-
malized cross helicity directly affects the cascade rates
through the term ∇× (v×b) in Eq. (1) and Π̃Eb1,Π̃HM1

in Eq. (2). As |c̃os θ| increases, the velocity and magnetic
fields align with each other, which could reduce the effi-
ciency of Π̃Eb1,Π̃HM1. FIG. 3 (b) shows the probability

distribution functions (P.D.F.) of |c̃os θ| with two filter
widths ∆1 = 0.038L and ∆2 = 0.013L. As the filter
width increases or the Hall effects are introduced, |c̃os θ|
centers around 1.0, indicating enhanced alignments be-
tween ṽ and b̃. FIG. 3 (c) compares the joint P.D.F. of

Π̃HM1 and c̃os θ between H40 and M40 with the filter
width ∆ = 0.038L. For M40, Π̃HM1 are almost indepen-

dent with |c̃os θ|. In contrast, as Hall effects are intro-
duced (H40), Π̃HM1 primarily concentrates on the region

with significant |c̃os θ|, indicating a potential decrease in
efficiency. For a quantitative estimation, a direct defini-
tion of efficiency ΓHM1 is introduced as

ΓHM1 =
|Π̃HM1|

2|b̃||ǫijkτjk(v,b)ei|

|ṽ × b̃|

|ṽ| |b̃|
, (3)

where ei is the unit vector on the i-th direction, the

first fraction evaluates the efficiency loss induced by the
angle between the two vectors b̃ and ǫijkτjk(v,b)ei,
and the second fraction evaluates the direct efficiency
loss induced by the angle between ṽ and b̃. FIG. 3

(d) shows the conditional average
〈
ΓHM1||c̃os θ|

〉
with

∆ = 0.038L. ΓHM1 is inversely proportional to |c̃os θ|.
In addition, H40 has a relatively lower efficiency than
M40. Specifically, when ∆ = 0.038L, Hall effects reduce
the averaged efficiency 〈ΓHM1〉 by 53.2%.

In fact, both hydrodynamic helicity in hydrodynamic
turbulence [33, 36] and cross helicity in HMHD turbu-
lence could affect cascade efficiencies. It could be of in-
terest to investigate the disparities between the effects
induced by the two helicity. Generally, hydrodynamic or
cross helicity has two sources: geometric and phase align-
ments [37]. Taking the cross helicity as an example, geo-

metric alignment means an increase in |c̃os θ|, while phase

alignment denotes a transformation from negative c̃os θ

to positive c̃os θ. Milanese et al. [37] found that in hy-
drodynamic turbulence, hydrodynamic helicity cascades
forward with dynamic phase alignments, while no geom-
etry alignment is detected. In comparison, FIG. 3 (b)
reveals that geometric alignments are the key processes
in HMHD turbulence. The two different alignments lead
to different effects on cascades. As shown in FIG. 3 (b-d),
the geometric alignment induced by Hall effects strongly
reduces the cascade efficiency.

FIG. 4 shows the current density |j|, where the pink
and green lines give the magnetic lines and streamlines,
respectively. The comparison of FIG. 4 (a) M3 and (b)
H3 reveals that when the forcing scale is significantly
larger than dI , Hall effects induce filaments along the
magnetic field [38], attributed to the ion cyclotron and
whistler modes [22, 39] and the transverse instabilities
[26] in HMHD. The comparison of FIG. 4 (c) M40 and (d)

FIG. 4. Structures with |j| > 2.2mean{|j|}. The background
slice shows the contour of |j|. (a) M3; (b) H3; (c) M40; (d)
H40. Pink lines: magnetic lines; Green lines: streamlines.
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H40 shows that as the forcing scale is close to dI , current
sheets are totally broken by these filaments along the
magnetic field. The current density distribution of H40
is irregular and coarse. Moreover, alignments between
the streamlines and magnetic lines are more pronounced
in H40 than in M40.
Then, experimental evidence is necessary to verify our

numerical findings. Since only single-point time series of
solar wind can be obtained by spacecraft, vKH relations
are needed [16]. Exact vKH relations for the magnetic
helicity in isotropic HMHD turbulence are derived here,
where the bidirectional transfer model [40] is applied. Af-
ter lengthy derivations in SM [28], the first vKH relation
for the magnetic helicity can be written as

VHM1(r) =
r

2
〈δ(U3b2 − U2b3)δbL〉

=
1

3
εHMI r −

∑

K∈{kf}

εHM(K)
sinKr −Kr cosKr

K3r2
,

=

{
−εHMF r/3, rkf ≪ 1,

εHMI r/3, rkf ≫ 1,

(4)
where δqi(r) = qi(x

′) − qi(x) is the two-point increment
for an arbitrary vector q; r = x′ − x is the displacement
between two positions x and x′ with a distance r = |r|;
the subscript L refers to the longitudinal direction (along
r), and the subscripts 2 and 3 refer to the two remaining
transverse directions; εHMI and εHMF are the inverse
and forward cascade rates, εHM (K) is the injection rate
at the forcing wavenumber K ∈ {kf}. This equation is
the isotropic form of the results derived by Banerjee and
Galtier [22]. Using the isotropic condition, VHM1(r) is
equivalent to

VHM2 = 2 〈δ(v2bL − vLb2)a
∗
2〉 − dI 〈δ(bLbi)b

∗
i 〉 , (5)

where q∗i (r) = [qi(x) + qi(x
′)]/2 for an arbitrary vector

q. FIG. 5 (a) verifies the vKH relations using the results
of H40, where black curves are predictions in Eq. (4)
with εHMI = 4.4 × 10−4 and εHMF = 1.0 × 10−4. The
equivalent cascade rates are estimated through the fluxes
over corresponding wavenumber ranges in SM [28]. As
shown, VHM1 and VHM2 are almost the same. At the
scale r/L < 0.2, they both fit well with the predictions.
In contrast, at the scale r/L ' 0.2, the results devi-
ate from the prediction, attributed to the simple inertial
range assumption [40]. To further verify the vKH rela-
tions, 8 minute averaged time series for solar wind dur-
ing day 209/1993 - day 253/1994, day 212/1995 - day
224/1996 and day 20/2006 - day 23/2007 of the Ulysses
spacecraft are evaluated [41, 42]. The three periods are
very close to solar activity minima, and the heliocentric
distance ranges from 2.5 to 4.5 AU [18]. Using the Tay-
lor hypothesis [43], the vKH relation for magnetic helicity
VHM (τ) = 〈−VLτδ(v3b2 − v2b3)δbL/2− dIδ(bLbi)b

∗
i 〉t =

−εHMVLτ/3, where VL is the averaged longitudinal ve-
locity, τ is the time lag, 〈·〉t represents the time average,

bi is normalized by (4πρ)−1/2, and ρ is the mass den-
sity. FIG. 5 (b) gives one example of linear scaling re-
lated to VHM1(τ), using data of days 49-59 in 2006. As
shown, VHM1(τ) is linear among nearly two decades with
εHM = −8.9× 1011J ·m/(kg · s).

Based on vKH relations, the turbulent space plasma
can be recognized, and the magnetic helicity dissipation
rates can be measured. Limited by the data resolution,
the Hall effects on the inverse cascades cannot be directly
recognized. Therefore, we decompose the numerical find-
ing into two parts: the cross helicity generation, and the
cascade efficiency suppression by cross helicity. Notably,
in the actual solar wind, the cross helicity could also orig-
inate from other effects. In FIG. 5 (c), the conditional
average of the cross helicity (HC) versus the magnetic
helicity (HM ) is evaluated. Averaged over every 11 days,
HM and HC at the timescale δt ∈ (8min, 4 h) are ob-
tained by the Fourier expansion [23, 44]. The results at
other timescales are consistent with our main findings
and are given in SM [28]. As shown in FIG. 5 (c), when
the Hall effects are relatively important (dI ≥ 〈dI〉t), HC

is strongly anticorrelated with HM . In contrast, when
dI < 〈dI〉t, HC is relatively independent with HM , ex-
cept for the extreme event (HM/σ(HM ) ' 2). Even if the
data with an 8-min resolution is insufficient to resolve the
Hall effects, the remarkable anticorrelation between HC

and HM when dI ≥ 〈dI〉t imply that Hall effects and
magnetic helicity could induce non-zero cross helicity.
FIG. 5 (d) shows the conditional average of the normal-
ized cascade rates ΓHM = |εHM |/[|δv||δb|2VLτ ] versus
the normalized cross helicity | cos θt| = |δv · δb|/|δv||δb|,
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FIG. 5. Evidence of solar wind data. (a) Numerical verifica-
tions of VHM1 and VHM2. Solid lines: positive values; dashed
lines: negative values. (b) Example of the linear scaling in
solar wind. (c) Conditional average of the cross helicity ver-
sus the magnetic helicity. (d) The normalized cascade rates
versus the normalized cross helicity.
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where the distance r is given by the middle scales with
linear scaling. As shown, the normalized cascade rates
are anticorrelated with | cos θt|, consistent with our nu-
merical findings.

In this letter, we perform six DNSs with grid points up
to 20483 to investigate Hall effects on helical MHD turbu-
lence. We find that Hall effects could induce strong cross
helicity by geometric alignments, which then strongly re-
duces inverse cascade efficiencies and leads to the accu-
mulation of magnetic energy and helicity at large scales.
The process is associated with the breaking of current
sheets by filaments along magnetic fields. Then, we de-
rive two vKH relations and verify them using the numer-
ical and Ulysses data. The numerical findings about the
cross helicity generation and the cascade efficiency sup-
pression are then separately confirmed by the solar wind
results. In the heliosphere, partial extreme solar wind
events are generated by the eruption of the solar corona,
where magnetic helicity and Hall effects both matter.
Generally, one may believe that Hall effects are negli-
gible in large-scale solar wind [27]. However, this letter
gives a possible mechanism in solar wind turbulence that
Hall effects at small scales could strongly affect large-
scale magnetic fields through cross helicity.
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